If it's not what You are looking for type in the equation solver your own equation and let us solve it.
8x^2+14x-85=0
a = 8; b = 14; c = -85;
Δ = b2-4ac
Δ = 142-4·8·(-85)
Δ = 2916
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{2916}=54$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(14)-54}{2*8}=\frac{-68}{16} =-4+1/4 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(14)+54}{2*8}=\frac{40}{16} =2+1/2 $
| ((3+1/8)+3+2(79/96))+3(79/96)*(3+1/8)=a | | 2y*4-(25)=0 | | 7x-7=2×-1 | | X/6+3x/8=13 | | 4x+4x+4x=12 | | x+7=3+x-8/13 | | 8x+3=8x+5 | | 2/3(2.7y/2)=0.9y | | 4*3z-3+1/8=7 | | 240=n+(n+1) | | 5x+5=2+2 | | 6+12x=150 | | 5x+114=15-6 | | 4x^2+100x=360 | | 8*x=x*x+8 | | 2y*4=25 | | 7^(2m)+7^(m-1)=56 | | 0,1*x+9=0.6*x-7 | | 2(3x3)=-2(x-7) | | 34-12x=2x-36 | | 4x+(5x+1)=2(3x-2)-5 | | 3x-10=4(x-4) | | 19+0-(-1)=4x | | 12+2h=5h+8 | | -2q-3=-3(2q+1) | | 19+0−(−1)=4x | | 9m-15=56 | | 5x+3=11x+39 | | 7*(7+y)-4y=4y-67 | | 12-3e=e-36 | | 3x+x=3600 | | 4k/9=12 |